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Abstract-This paper addresses the fundamental question of whether the applied load should
necessarily be assumed to remain constant for bifurcation buckling analysis of thin-walled open­
profile columns via the work-energy approach, The constant load condition has been recently used
as a fundamental requirement for a valid analysis by Goto and Chen (1989, Int. 1. Solids Structures
25,621-634) to dispute a theory proposed by Ojalvo (1989, ASME J. Appl. Mech, 56, 633-638).
This paper establishes that neither constant load nor constant distance need be insisted upon for a
valid analysis. It is permissible to assume either constant load or constant distance (or any other
compatible configuration with second order changes in loads and distance) for a valid analysis. It
is essential to ensure that the appropriate strain energy and work expressions are adopted,

I. INTRODUCTION

Goto and Chen (1989) have attempted to counter Ojalvo's (1989) dismissal of the Wagner
effect in the buckling theory of thin-walled open-profile columns, by arguing that the axial
load should not change even by a second-order magnitude as the column buckles if the
analysis via the work--energy approach is to be valid, In fact, constraining the load to a
constant for bifurcation buckling analysis is a widely adopted practice [see, for example,
Timoshenko and Gere (1961); Thompson and Hunt (1973); Chajes (1974); Washizu
(1982); Trahair and Bradford (1988)], Alwis and Wang (1995), however, have recently
pointed out that there is no need to insist on either constancy of load or constancy of
distance between the bar ends when considering the deformed configuration for bifurcation
flexural buckling analysis of axially loaded bars via energy approach, As long as the
buckling mode satisfies the equilibrium, compatibility and constitutive relations, the correct
solution can be obtained.

The present paper addresses the question of whether the above conclusion on second­
order load changes during buckling still applies for buckling of thin-walled open-profile
columns, This fundamental question is important, in view of the aforementioned assertion
used by Goto and Chen (1989) with reference to the same phenomenon, to study the
validity of a buckling theory. Note that the extension of the earlier study on flexural
buckling of bars to buckling of thin-walled open-profile columns is not trivial since the
latter type ofcolumns may buckle in flexural, torsional or combined modes. Twisting causes
the cross-section to warp, thus, even when no shear distortion in the middle planes is
assumed, points on an original plane section would no longer be contained in a plane
during torsional deformation, unlike in pure flexural deformation.

2. STRAIN-DISPLACEMENT RELATIONSHIP

Consider a straight, thin-walled open-profile member as shown in Fig. 1. Adopting the
Cartesian coordinate system (x,Y, z) defined for the initial configuration of the member
with z-axis along the centroidal axis, the incremental displacement components (u, v, w) in
the (x, Y, z) directions of a point can be expressed as (Goto and Chen, 1989),
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Fig. 1. Cross-section of a thin-walled open-profile member.

v = Vs +(x-xs)8 = ve +x8

(I a)

(I b)

(Ie)

where (J is the incremental rotational angle about the z-axis and ro(s) is a warping function,
subscripts sand c denote quantities on the shear centre and centroid, respectively, and (.),
denotes differentiation with respect to z. The term We is commonly taken as the centroidal
deflection in the z-direction. It should be realized that We is an imagined displacement
representing the average of axial displacements at all material points of the cross-section,
irrespective of whether the centroidal axis passes through the material or not.

For convenience of mathematical manipulations, the axes (x,Y) are chosen to coincide
with the principal axes of the cross-section. As a result, denoting integration over the cross­
sectional area A by JA(') dA,

LXdA = 0, LYdA = 0, LXYdA = O. (2a-e)

The origin of the profile coordinate s can be selected such that the warping function ro,
satisfies

LrodA=O.

The point S, being the shear center, satisfies the conditions

L rox dA = 0, L roy dA = O.

(3)

(4a,b)

Biot's incremental strain definition is employed and the strain-displacement relation
applicable to fibres, which are initially parallel to the member axis, are derived below. All
displacement and strain variables refer to the coordinate locations of the straight member
of length L under the axial load P. Let E be the incremental elastic modulus associated
with Biot's incremental strain.

Neglecting the terms of order higher than owjoz, (oujoZ)2 and (ovjoZ)2, the longitudinal
normal strain increment can be expressed in the form
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(5)

This is a well-known equation and is the same as that implemented by Goto and Chen
(1989). Substitution ofeqns (1) in eqn (5) leads to

where

ez = -xu~ - yv~ -we" +or(z) +oi(x,y, z), (6)

(7a)

(7b)

Note that Or(z) is defined in terms of centroidal parameters whereas Oi(x,y, z) vanishes
at the centroid.

3. RELATIONSHIP BETWEEN CHANGES IN LOAD AND SUPPORT DISTANCE

It follows from eqn (7a) that the change in distance between the ends of the centroidal
line is given by

rL rL
1 rL

ilwc = Jo w~dz = Jo Or(z) dZ-"2 Jo (U~2 +V~2) dz. (8)

Note that the end points of the centroidalline are the centroids of the end sectional surfaces,
in accordance with the definition of We as the average displacement.

The second-order change in the load P during deformation is given by

(9)

Substitution of eqn (6) into eqn (9) yields

(10)

where r is the radius of gyration of the section about the centroidal axis. Note that the last
term on the right-hand side of eqn (10) arose from the integration of Oi(x,y, z) over the
sectional area, i.e.

(11)

Substitution ofOr(z) from eqn (10) into eqn (8) furnishes

(12)

Equation (12) gives the relationship between the changes in centroidal end distance and
the load, as the column deforms.
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4. BUCKLING ANALYSIS

The incremental work done by the load can be expressed as

W (13)

where P is the compressive axial load. Note that the second-order change in P does not
appear in eqn (13) since its product with the second-order displacement increments would
produce a fourth-order term. By substituting from eqn (8), the work done in eqn (13) can
be expressed as

fL P fL
W= -P

Jo
O~(z)dz+2Jo (u2+v~2)dz. (14)

In view of eqns (8) and (10), the second-order term Oi(z) here can be interpreted as a term
that represents second-order changes in centroidal end distance or load.

The corresponding increment of strain energy of the buckled bar is given by

(15)

where V denotes the volume of the bar and GJ is the torsional rigidity. By substituting eqn
(6) into eqn (15) and neglecting terms of order higher than second, the strain energy
becomes

(16)

in which Ix and Iv are the second moments of area about the x and y axes, respectively, and
I w is the warping section constant.

In view of eqns (14) and (16), the total incremental energy functional is given by

ll=U-W (17)

It is worthwhile noting that a crucial difference between purely flexural buckling and
flexural-torsional buckling is that, in the former, the Ohx,y,z) term does not arise in the
formulation. Recall that eqn (11) produces

PI iL
2 .... _ I 2 /2..,.02(x,y,,,)dV - 2Pr 8 d...

A v 0

By substituting eqn (18) into eqn (17), the energy functional can be expressed as

(18)

(19)

This energy expression is essentially the same as that obtained by Goto and Chen (1989)
and others. The last term on the right-hand side of eqn (19) is the well-known Wagner
term. Readers who are familiar with Ojalvo's arguments against the Wagner hypothesis
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should note that the term in eqn (18) is exactly the difference between the Wagner term
and the alternative term proposed by Ojalvo (1989).

By minimising the energy functional with respect to the generalized displacement
components and ensuring that the kinematic boundary conditions are satisfied, the buckling
solution can be obtained in the usual manner.

It follows from the foregoing that any second-order change dwc and dP may be
admitted provided that the relationship given in eqn (12) is satisfied. Indeed, neither
constant load nor constant distance need be insisted upon for a valid analysis.

5. IMPLICATIONS OF CONSTRAINING SECOND-ORDER CHANGES

5.1. Implications of the constant load condition
Consider the assumption that the load remains constant during buckling (i.e. dP = 0).

As dictated by eqn (12), the change in distance must be

(20)

Furthermore, eqn (10) leads to

In view of eqn (20), the incremental work done of eqn (13) takes the following form:

(21)

w= (22)

On substitution of eqns (18) and (21) into eqn (16), the strain energy functional takes the
familiar form

(23)

This shows that the conventional form of strain energy functional (Bleich, 1952) implicitly
presumes constant load during buckling.

It is observed that both derivations ofOjalvo (1989) and Goto and Chen (1989) have
used the conventional strain energy functional and by so doing, they have committed
themselves to the assumption of constant load during buckling.

5.2. Implications ofconstant centroidallength condition
On the other hand, if one presumes that there is no change in distance between the

centroidal ends during buckling (i.e. dwc = 0), then eqn (12) shows that the change in load
must be given by

EA
dP = - L b.

Furthermore, eqn (8) leads to

For this case, by virtue of null dwc, the incremental work done is

(24)

(25)
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w=o. (26)

In view of eqns (18) and (25), the incremental strain energy functional in eqn (16) becomes

(27)

Note that the strain energy functional in eqn (27) is the same as the total potential energy
functional in the general case.

6. CONCLUDING REMARKS

Hitherto, the applied axial load has been invariably assumed as a constant for bifur­
cation buckling analysis of columns via work-energy approach. Recently Alwis and Wang
(1995) have shown that there is no need to insist on either constancy of load or constancy
of distance between the bar ends for bifurcation flexural buckling analysis via work-energy
approach. The present study establishes that this conclusion is also valid for flexural­
torsional buckling of thin-walled open-profile columns.

It is permissible to assume either constant load or constant distance (or any other
compatible configuration with second-order changes in load and distance) for a valid
analysis. It is essential to ensure that the appropriate strain energy and work expressions
are adopted, as pointed out in Section 5.

With reference to Goto and Chen's (1989) arguments against Ojalvo's (1989) deri­
vation, the foregoing conclusion establishes that allowing for a second-order change in load
is not an error in itself. The writers would like to emphasize that the Wagner term appears
even when a second-order change in load is allowed. The actual error made by Ojalvo,
together with other issues brought up by him such as nonavailability of a free-body diagram
to show the Wagner effect, will be addressed in a future paper.

It is well known that the buckling load is a function of the member length. In the
classical buckling analysis, the column length is taken as the original undeformed length.
In the present analysis, the column length L at the point of incipient buckling was not
specifically identified as an undeformed length or a deformed length, yet the energy func­
tional derived is the same as that obtained in the classical analysis. As such, if one wishes
to include the effect of prebuckling axial shortening of the column, one needs only to use
the shortened column length and the appropriate incremental elastic moduli (Bazant 1970)
in the classical solutions.
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